INTRODUCTION

Hands are the site of a large number of burn injuries, with partial thickness burns amongst the most frequent type of hand burn. Treatment must be safe, minimise the risk of infection, be comfortable for the patient and enable the patient to maintain as much hand mobility and function as possible. Effective management of burn wound exudate, reduction in physiotherapy time and reduced number of dressing changes are all desirable features for a burn dressing.

A number of previous hand burn treatment alternatives have been proposed, each being used with specific burns problems in mind; however, none have inherent fluid management properties. A new sodium carboxymethyl cellulose (CMC) burn dressing has been designed especially for hand burns to provide a solution to the above treatment issues and to also provide effective fluid management. The dressing, AQUACEL® Ag Burn Glove was designed to be easy to apply and to be available in 5 sizes and in both a silvered version and a non-silvered version. The design contains Hydrofiber® technology reinforced with Nylon stitching and therefore forms a cohesive gel on contact with burn wound exudate, making it comfortable and soft for the patient to wear, whilst also being easy to remove in one piece.

METHODS

The new AQUACEL® Ag Burn was assessed by the following in vitro test methods and compared to an alternative silver burn dressing, frequently used for partial thickness burns, Acticoat™ dressings.

Fluid Absorbency and Retention:

Absorbency = \(\frac{W_2 - W_1}{A \times H} \) (g/cm²)

Retention (%) = \(\frac{W_3 - W_1}{A \times H} \) \times 100

Where:

- \(W_1 \) is the initial wet weight of the dressing
- \(W_2 \) is the weight after 1 minute
- \(W_3 \) is the weight after 1 minute under compression load
- \(A \) is the area covered by the dressing
- \(H \) is the compression load

The dressing samples were placed under 40mm Hg compression load for 1 minute, immediately re-weighed and weighed again after 30 minutes.

Table 1: The fluid management properties of the new AQUACEL® Ag Burn dressing compared to the alternative Acticoat™ dressing

<table>
<thead>
<tr>
<th>Description</th>
<th>AQUACEL® Ag Burn</th>
<th>Acticoat™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Retention</td>
<td>90%</td>
<td>70%</td>
</tr>
</tbody>
</table>

Figure 1 and 2: Fluid Absorbency and Percentage Retention (respectively) of the burn dressings tested. Results show that AQUACEL® Ag Burn dressing for hand burn treatment has greater absorption capacity per unit area and percentage retention than the alternative burn dressing tested.

BioAdhesion:

Cell Number x 1000

Figures 3 and 4: Images showing the lateral spread of fluid for AQUACEL® Ag and Acticoat™ dressing when challenged with horse serum. The CMC containing AQUACEL® Ag Burn dressing locks the fluid within the fibres resulting in less spread of the fluid out of the fluid application area.

CONCLUSION

A new glove dressing made of CMC (Hydrofiber®) reinforced with Nylon stitching has been designed and developed to assist in the management of hand burns. In vitro data show that the fluid management is good, the dressing is able to gel, absorb and retain fluid, and minimise the spread of fluid laterally.

The dressing was designed to be easy to remove from a burn as demonstrated in the bio-adhesion test data which shows low adherence of the dressing in an in vitro cell model. Minimal lateral spread over the dressing material should, in a clinical situation, keep the burn exudate locked within the dressing and prevent the spread of exudate onto the peri-wound skin thus assisting in minimising per-burn tissue maceration.

REFERENCES

2. Caruso et al. ‘AQUACEL® Ag in the Management of Partial-Thickness Burns: Results of a Clinical Trial at the San Antonio Burn Centre’ 2004.
3. Cochrane C, Rippon MG, Rogers A, Walmsey R, Knottenbelt D, Bower P. Application of an in vitro model dressing and Acticoat™ dressing when challenged with horse serum. The CMC containing AQUACEL® Ag Burn dressing locks the fluid within the fibres resulting in less spread of the fluid out of the fluid application area.

design contains Hydrofiber® technology reinforced with Nylon stitching and therefore forms a cohesive gel on contact with burn wound exudate, making it comfortable and soft for the patient to wear, whilst also being easy to remove in one piece.

FIELD TESTS

The new AQUACEL® Ag Burn was assessed by the following in vitro test methods and compared to an alternative silver burn dressing, frequently used for partial thickness burns, Acticoat™ dressings.

Fluid Absorbency and Retention:

\[
\text{Absorbency} = \frac{W_2 - W_1}{A \times H} \quad \text{g/cm}^2
\]

\[
\text{Retention} = \frac{W_3 - W_1}{A \times H} \times 100
\]

Where:

- \(W_1 \) is the initial wet weight of the dressing
- \(W_2 \) is the weight after 1 minute
- \(W_3 \) is the weight after 1 minute under compression load
- \(A \) is the area covered by the dressing
- \(H \) is the compression load

The dressing samples were placed under 40mm Hg compression load for 1 minute, immediately re-weighed and weighed again after 30 minutes.

Absorbency

<table>
<thead>
<tr>
<th>Description</th>
<th>AQUACEL® Ag Burn</th>
<th>Acticoat™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>0.05</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Retention

<table>
<thead>
<tr>
<th>Description</th>
<th>AQUACEL® Ag Burn</th>
<th>Acticoat™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention</td>
<td>90%</td>
<td>70%</td>
</tr>
</tbody>
</table>

BioAdhesion:

Cell Number x 1000

Figure 3: The low number of cells adhered to the AQUACEL® Ag Burn Dressing compared to that of the alternative dressing tested, predicts that the AQUACEL® Ag Burn dressing should be easily removed without tissue trauma which is particularly important for the treatment of hand burns.

Lateral Spread of Fluid:

Figures 4 and 5: Images showing the lateral spread of fluid for AQUACEL® Ag Burn and Acticoat™ dressing when challenged with horse serum. The CMC containing AQUACEL® Ag Burn dressing locks the fluid within the fibres resulting in less spread of the fluid out of the fluid application area.

REFERENCES

2. Caruso et al. ‘AQUACEL® Ag in the Management of Partial-Thickness Burns: Results of a Clinical Trial at the San Antonio Burn Centre’ 2004.
3. Cochrane C, Rippon MG, Rogers A, Walmsey R, Knottenbelt D, Bower P. Application of an in vitro model dressing and Acticoat™ dressing when challenged with horse serum. The CMC containing AQUACEL® Ag Burn dressing locks the fluid within the fibres resulting in less spread of the fluid out of the fluid application area.